doi:10.3788/gzxb20134205.0543

空地激光通信链路功率与通信性能分析与仿真

于林韬,宋路,韩成,周德春

(长春理工大学 电子信息工程学院,长春 130022)

摘 要:分析了空地激光通信系统中主要器件和信道对通信光功率的影响,并根据接收探测器的信 噪比和通信误码率公式,建立了空地激光通信仿真系统.分析了在误码率优于10⁻⁷条件下,不同地 面大气能见度所对应的最高通信速率;以及要实现通信速率为1.5 GHz,误码率优于10⁻⁷时需要 的最小发射功率和最长通信距离.结果表明,当发射功率越大时,地面大气能见度对误码率的影响 越明显.

Analysis and Simulation of Link Power and Commincation Performance in Space-ground Optical Communication

YU Lin-tao, SONG Lu, HAN Chen, ZHOU De-chun

(Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China)

Abstract: The influences of main parts of an apparatus and channel to power of communication laser on space-ground optical communication slant link were analyzed. Based on the formula for signal-to-noise ratio of receiving detector and bit error rate of communication, the simulation system of space-ground optical communication was established. Using the simulation system, the highest communication rates as to the different atmospheric visibilities were analyzed, the assumptions that bit error rate is superior to 10^{-7} , the minimum transmitter power and the maximum communication distance were discussed in order to achieve the communication rate to 1.5 GHz and bit error rate is superior to 10^{-7} . The result indicates that influence of the atmospheric visibility to the bit error rate is more obvious, when the transmitter power is greater.

Key words: Space-ground optical communication; Communication rate; Bit error rate; Signal noise ratio; Atmosphere turbulence

0 引言

对于自由空间激光通信系统来说,通信速率和 误码率是两个非常重要的技术指标,两者体现了在 一定条件下,激光通信链路的通信性能.高速率、低 误码率是自由空间激光通信系统追求的目标,通信 速率和误码率不仅受外界因素的影响,而且还存在 相互制约的关系,即在其他条件(包括信道编码方 式)不变的情况下,通信速率与误码率呈正比.

由于自由空间激光通信具有宽带、高速、安全等 优点,美国、日本、欧空局等国家和机构非常重视空 间激光通信技术研究,先后制定了 30 余个空间激光 通信的研究计划.与空间激光通信链路通信性能相 关的研究主要包括大气信道对激光通信的影响及抑 制措施^[1-4]、误码率的分析与优化方法^[5-7]、平台振动 对误码率的影响^[8-9]等.相对于星间激光通信来说,

第一作者:于林韬(1972-),男,副教授,博士研究生,主要研究方向为光通信. Email;yulintao@cust.edu.cn

基金项目:国家高技术研究发展计划(No. XXXXXXXX)资助

导师(通讯作者):宋路(1952-),女,教授,主要研究方向为光通信. Email:usong@126.com 收稿日期:2012-11-05;录用日期:2013-01-11

空地激光通信系统具有平台的低频扰动与高频振动 特性、强天空背景光特性、大气信道特性和平台高动 态等特性^[10].随着星间激光通信关键技术、大气激 光传输理论和空中平台特性的深入研究,一些国外 发达国家和组织相继展开空地激光通信链路的 研究.

在影响空地激光通信性能的因素中,大气湍流 效应(闪烁效应、脉冲展宽效应、散斑效应等)和通信 链路功率的变化是主要影响因素.因此,通过仿真研 究空地激光通信链路中功率的变化,进而对大气信 道条件下,激光通信链路的通信性能进行分析是非 常有意义的.本文通过对空地激光通信链路的建模 和仿真,分析了不同条件下,空地激光通信链路的通 信性能,为空地激光通信系统的设计和野外试验奠 定了良好的理论基础.

1 通信链路功率分析

在空地激光通信系统中,由激光器发射的通信 光功率,经过发射光学系统衰减、发射天线增益、自 由空间衰减、大气信道衰减、大气湍流闪烁影响、跟 踪误差衰减、接收光学系统衰减、接收天线增益,最 后得到探测器接收到的通信光功率.空地激光通信 链路的功率变化情况可以由式(1)近似表示为

 $P_r = P_t G_t \eta_{ot} L_s \eta_s G(\theta_{off}) G_r \eta_{or}$ (1) 式中 P_r 为探测器接收到的通信光功率; P_t 为发射 单元的出射功率; G_t 为发射光学天线增益; η_{ot} 为发 射光学组件效率; L_s 为自由空间引起的链路衰减; η_s 为信道引起的功率损失, $G(\theta_{off})$ 为离轴增益, G_r 为接收光学天线增益; η_{or} 为接收光学组件效率.

在空地激光通信系统中,发射光学天线的增益 与激光器输出的束散角 θ_{div}有关,其表达式可由式 (2)表示^[7];接收系统光学天线的增益与光学天线的 口径和通信光波长有关,其表达式可由式(3)表 示^[7].

 $G_{\rm t} \approx (4/\theta_{\rm div})^2$ (2)

$$G_{\rm r} \approx 4\pi \times \lfloor (\pi/4) D_{\rm r}^2 \rangle / \lambda^2 = (\pi D_{\rm r}/\lambda)^2$$
(3)

式中 G_r 为发射或接收系统的天线增益, D_r 为发射 或接收系统的光学天线口径, λ 为激光波长.

发射和接收光学系统的损耗主要包括象差引起 的波前畸变损失、进行光束整形和耦合的效率、在光 学路径上的各光学组件累计的光学透过率之积.激 光光束的波前功率由于受到诸多光学单元的波面质 量影响,其分布将出现起伏或抖动.发射或接收系统 总的波前误差为每个组件的均方和,近轴光学系统 由畸变引起的光强损失可由式(4)近似表示为

$$\eta_{
m ot/or} = {
m e}^{-(k_{\sigma_{
m ot/or}})^2}$$

(4)

式中 $k=2\pi/\lambda$, $\sigma_{\text{ot/or}}$ 为发射或接收单元的波面误差. 对于大多数空间激光通信系统,通常要求激光发射 和接收单元的波面误差小于 $\lambda/10$,其对应的功率损 耗约为 0.67.在实际系统中,对于高速接收探测器 来说,探测器的光敏面很小,考虑轻小型化设计,因 此不能保证所有通信光能量都被接收,在接收端进 行光束整形和耦合的效率通常在 0.5 到 0.8 之间. 在光学路径上的各光学组件累计的光学透过率之积 在 0.4 到 0.7 之间.

对于服从高斯分布的激光光束,在视轴处的光 强最高,如果激光光束视轴存在一定的误差,接收到 的激光光束强度将呈高斯分布下降,这就需要考虑 高斯光束的离轴增益.对于能量服从高斯分布的光 斑,对应的离轴增益可近似由式(5)表示^[7]为

 $G(\theta_{off}) \approx e^{-8(\theta_{off}/\theta_{div})^2}$ (5) 式中 θ_{off} 为离轴的角度,对于实际系统,通常对应跟 踪误差; θ_{div} 为激光器输出的束散角.

2 信道分析

空地激光通信系统的信道分为自由空间信道 (不含大气)和大气信道.自由空间信道损耗不考虑 大气的各种吸收和散射衰减,而仅仅考虑空间传输 所引起的几何衰减.由于激光束以一定的束散角出 射,所以随着传输距离的增加,自由空间信道损耗将 增加.自由空间信道的损耗与波长和通信距离有关, 其定量表达式可由式(6)表示^[7]为

 $L_{\rm s} = (\lambda/4\pi L)^2 \tag{6}$

式中 θ 为衍射极限角,L为通信距离.

对于空地激光通信来说,不可避免要经过大气 信道.当光波在大气中传播时,大气气体分子及气溶 胶的吸收和散射使传输的光辐射强度衰减.大气吸 收特性强烈的依赖于光波的频率,因此为了减少吸 收引起的衰减,空地激光通信系统所使用的通信光 的波长都选择在大气窗口附近.大气的散射是由大 气中不同大小的颗粒的反射或折射所造成的,在近 地面大气层中,分子散射的影响是很小的,造成光能 量衰减的主要是悬浮粒子的散射.散射衰减系数与 波长(λ)以及不同海拔高度处的压强(P)和温度(T) 有关,其表达式为^[11]

$$\eta_{s} = \frac{8\pi^{3}k_{b}T}{3\rho\lambda^{4}} \left[\left(\frac{p(n_{\rm NN} - 1)}{RT\rho_{\rm NN}} + 1 \right)^{2} - 1 \right]^{2}$$
(7)

式中, R 为气体常量, 其值为 287.05 J·kg⁻¹·K⁻¹; K_b 为波尔兹曼常量; n_{NN} 为在 0 海拔处的空气 折射率; ρ_{NN} 为在 0 海拔处的空气密度.

由于大气属于随机介质,大气衰减系数通常使 用与激光波长和能见度有关的经验公式来表示 (8)

 $\eta_{\rm s} = 3912/v(\lambda/\lambda_0)^{-q}$

式中v为能见度,单位为 m,λ_0 为550nm,q是与能见度有关的系数,较传统的观点认为它们之间的关系如式(9)^[12].对于空地激光通信,激光在大气中传输的过程中,激光束所处位置的海拔高度不同,而能见度与海拔高度的关系可由式(10)表示^[13].

 $q = \begin{cases} 1.6 & (v > 50000) \\ 1.3 & (6000 < v \le 50000) \\ 0.00016v + 0.34 & (1000 < v \le 6000) & (9) \\ (v - 500)/1000 & (500 < v \le 1000) \\ 0 & (v \le 500) \end{cases}$ $v = v_0 \exp(bh) \tag{10}$

式中 v₀ 为 0 海拔高度处的能见度,单位为 m;h 为 海拔高度,单位为 km,b 在沙尘暴环境下等于为 1.25,在其他环境下,根据与文献[11]的数据进行比 较分析,b 的值约为 0.1 是比较合理的.

大气湍流闪烁效应使远场光斑的功率在时域上 和空域上产生比较强烈的波动,导致汇聚到探测器 上光功率呈现较强烈波动,大大增加了光功率偏离 平均功率的程度.在中、弱湍流条件下,对于平面波 和球面波的空地激光通信的对数振幅起伏方差可分 別由式(11)和(12)表示^[14].式中 $\alpha(a)$ 可由式(13)表 示^[14], Γ 为 Gamma 函数, λ 为波长, φ 为天顶角,L为空中光端机所处的海拔高度,l为地面光端机所 处的海拔高度,z为光束在传播中所经过的海拔高 度.对于大气湍流闪烁效应所引起的功率变化可由 gamma-gamma 模型表示,如式(14)^[15],式中I为激 光功率, $K_{a-\beta}$ 为 $\alpha-\beta$ 阶,第二类修正贝塞尔函数, σ_{R}^{2} 为归一化光强起伏方差,可由式(15)得到^[15].

$$\sigma_x^2 = -2^{-\alpha/2} \pi^{5/2} \frac{\Gamma((2-\alpha)/4)}{\Gamma(\alpha/4)} [\sec(\varphi)]^{\alpha/2} a(\alpha) \cdot (2-\alpha)^{1/2} \Gamma(\alpha) (1-\alpha)^{(\alpha-2)/2} d\alpha (1$$

$$\frac{(2\pi/\lambda)}{(2\pi/\lambda)} \int_{C_{n}} \frac{(z)(1-z)}{(z)} dz (3\sqrt{\alpha}) \int_{C_{n}} \frac{(z)(1-z)}{(1-z)} dz (3\sqrt{\alpha}) dz (3\sqrt{\alpha}) \int_{C_{n}} \frac{(z)(1-z)}{(1-z)} dz (3\sqrt{\alpha}) dz (3\sqrt{$$

$$\sigma_x^2 = -2^{-a/2} \pi^{5/2} \frac{\Gamma(\alpha/2 - a/7 + 1)}{\Gamma(\alpha/4)} [\operatorname{sec}(\varphi)]^{a/2} a(\alpha) \cdot$$

$$(2\pi/\lambda) \int_{l}^{L} C_{n}^{2}(z) \left(\frac{z}{L}\right)^{(a-2)/2} (L-z)^{(a-2)/2} dz$$

$$(3 < a < 5)$$
(12)

$$a(\alpha) = 2^{\alpha-6} \left(\alpha^2 - 5\alpha + 6\right) \pi^{-3/2} \frac{\Gamma((\alpha-2)/2)}{\Gamma((5-\alpha)/2)}$$

$$(3 < \alpha < 5) \tag{13}$$

$$\begin{cases} f(I) = \frac{2(\alpha\beta)^{(3+\beta)/2}}{\Gamma(\alpha)\Gamma(\beta)} K_{\alpha-\beta}(2\sqrt{\alpha\beta I}) \\ \alpha = \{ \exp\left[\frac{0.49\sigma_R^2}{(1+1.11\sigma_R^{12/5})^{7/6}}\right] - 1 \}^{-1} \\ \beta = \{ \exp\left[\frac{0.51\sigma_R^2}{(1+0.69\sigma_R^{12/5})^{5/6}}\right] - 1 \}^{-1} \\ \sigma_R^2 = (e^{4\sigma_x^2} - 1) \end{cases}$$
(15)

3 信噪比和误码率分析

对于高速激光通信系统来说,通常采用 InGaAs APD 作为通信光的探测器,探测器检测出的光电流 包括信号产生的光电流、背景光产生的光电流和探 测器噪音产生的光电流,其中信号功率可根据前面 的分析得到.探测器接收到的天空背景光功率与天 空背景光亮度谱密度 φ(λ),接收系统的光学天线口 径 D、接收视场角 $θ_{for}$ 、窄带滤光片的带宽 $\Delta \lambda$ 有关, 其表达式为^[16]

$$P_{\rm b} = \varphi(\lambda) \frac{\pi}{4} \theta_{\rm fov}^2 \frac{\pi}{4} D^2 \Delta \lambda \tag{16}$$

探测器的噪音电流主要包括暗电流噪音、量子 散粒噪音、热噪音和附加噪音^[14].暗电流噪音包括 体暗电流和表面暗电流,其中体暗电流源于 pn 结 内因热运动而产生的载流子,受雪崩增益的影响,表 面暗电流由表面缺陷、清洁度、偏置电压、表面积等 因素决定,不受雪崩增益的影响.

量子散粒噪音是由光信号进入光电二极管时, 光子产生和结合的统计特性引起的.雪崩光电二极 管(Avalanche Photo Diode, APD)中的雪崩过程具 有统计特性,不同的光生载流子的放大倍数可能不 同,给放大后的信号带来了幅度上的随机噪音即附 加噪音,根据前面的分析可知,光检测器的总均方噪 音电流可表示为^[16]

 $\sigma_{N}^{2} \approx 2e(R_{o}P_{r}+I_{D})M^{2+x}B+2eI_{L}B$ (17) 式中,e为电子电荷,x为额外噪音指数,M为光电 管平均增益,R_o为响应度,I_D为体暗电流,I_L为表 面暗电流,B为接收机单边带宽.

探测器的负载热噪音由光电二极管的负载电阻 $R_{\rm L}$ 的热噪音决定,可由式(18)^[16]表示,式中 $K_{\rm B}$ 为 波尔兹曼常量, T_0 是绝对温度.对于 APD,电路噪 音不占重要地位,主要噪音来源于检测器被雪崩区 放大了的量子噪音和体暗电流,因此,探测器的信噪 比可由式(19)表示^[16],对应的误码率可由式(20)表 示^[16].

$$\sigma_{\rm T}^{2} = 4K_{\rm B}T_{0}B/R_{\rm L}$$

$$SNR = \left[(R_{0}MP_{\rm r})^{2} \right] / \left[2eM^{2+x}(R_{0}P_{\rm r} + I_{\rm D} + R_{0}P_{\rm h})B + 4K_{\rm B}T_{0}B/R_{\rm L} \right]$$

$$(19)$$

$$BER = \frac{1}{2} \operatorname{erfc}\left(\frac{\sqrt{SNR}}{2\sqrt{2}}\right)$$
(20)

4 仿真结果与分析

对于空地激光通信来说,一般要求下行链路的 通信速率很高,而上行链路通常传输一些控制命令, 对通信速率的要求不高,因此,在这里只分析下行链 路.对于空地激光通信仿真系统参量如表1所示,折 射率结构常量采用 HV 模型^[17],大气湍流使用平面 波模型^[18],设地面风速 5m/s,根据前面的仿真模型 计算得到的对数振幅方差为 0.28.在这种条件下, 通信速率与误码率的关系如图1所示,图中 A、B、C 三条曲线分别是地面大气能见度为 10 km、15 km、 20 km 的条件下得到的. 在自由空间激光通信时,通 常要求误码率优于 10⁻⁷,如图 1 中的直线 D. 从图 1 可知,当地面大气能见度分别为 10 km、15 km、 20 km时,在满足误码率条件下,对应最高的通信速 率分别约为 0.97 GHz、2 GHz、2.9 GHz.

表 1 通信仿真系统参量 Table 1 Parameters of communication simulation system

Parameter	Value	Parameter	Value
Transmit power/W	2	Refractive index structure constant/m $^{-2/3}$	8×10^{-15}
Beam divergence angle of the laser output/mrad	2	Tracking error/ μ rad	25
Wavelength/nm	1550	Brightness spectral density/($W \cdot m^{-2} \cdot nm^{-1} \cdot sr^{-1}$)	0.2
Margin of safety	1.4	Receiving FOV/mrad	0.15
Launch optical system transmittance	0.3	Narrowband filter bandwidth/nm	3
Emission caliber/mm	120	Receiving optical system transmittance	0.4
Optical amplification factor	10	Detector responsivity/(A \cdot W ⁻¹)	0.95
Communication distance/km	20	Dark current/A	0.5E-10
The ground communication terminal altitude/km	0	The average gain of the phototube	20
Altitude airborne communications terminal/km $$	4	Absolute temperature/K	293

图1 通信速率与误码率之间的关系

Fig. 1 Relation between communication rate and bit error rate

假设通信速率为 1.5 GHz,其他参量不变的条件下,发射功率与误码率间的关系如图 2.图中 A、B 两条曲线分别是地面大气能见度为 15 km、20 km 的条件下得到的,在满足通信误码率要求的条件下,最小的发射功率分别约为 1.56 W 和 1.18 W.当发

射功率为1W时,地面大气能见度从15~20km,误 码率相差不到2个数量级.当发射功率为2W时, 地面大气能见度从15~20km,误码率相差超过3 个数量级.

假设发射功率为2W,其他参量不变的条件下, 通信距离与误码率间的关系如图3.图中A、B、C三 条曲线分别是地面大气能见度为10km、15km、 20km的条件下得到的,在满足通信误码率要求的 条件下,最长通信距离分别约为18.2km、22km、 25.1km.

5 结论

通过对空地激光通信链路功率的分析,建立空 地激光通信仿真系统.针对不同的条件,利用空地激 光通信仿真系统分析了空地激光通信链路的通信性 能,通过分析可知,在给定参量的情况下,地面大气 能见度大于 15 km 时,可实现通信速率为 2 GHz, 误码率优于 10^{-7} ;如果其他条件不变,要实现通信 速率为 1.5 GHz,误码率由于 10^{-7} ,在地面大气能 见度为 15 km、20 km 的条件下得到的最小的发射 功率分别约为 1.56 W 和 1.18 W. 当发射功率越大 时,地面大气能见度对误码率的影响越明显.如果发 射功率为 2 W,地面大气能见度为 10 km、15 km、 20 km的条件下得到的最长通信距离分别约为 18.2 km、22 km、25.1 km.

参考文献

 GAO Chong, MA Jing, TAN Li-ying, et al. Time-averaging effects for atmospheric scintillation in atmospheric optical communication[J]. Acta Optica Sinica, 2006, 26(4): 481-486.
 高宠,马晶,谭立英,等. 大气光通信中大气闪烁时间平滑效

高龙,与笛,厚立央,等. 天气尤通信中天气闪烁时间半滑效 应研究[J]. 光学学报,2006,26(4):481-486.

[2] JI Xiao-ling, ZHANG Tao, CHEN Xiao-wen, et al. Spectral properties of flat-topped beams propagating through atmospheric turbulence[J]. Acta Optica Sinica, 2008, 28(1): 12-16.

季小玲,张涛,陈晓文,等. 平顶光束通过湍流大气传输的光 谱特性[J]. 光学学报, 2008, **28**(1):12-16.

[3] YANG Chan-qi, JIANG Wen-han, RAO Chang-hui. Impact of aperture averaging on bit-error rate for free-space optical communication[J]. Acta Optica Sinica, 2007, 27(2): 212-218.
 [4] 日前 美介知 依於 # 日谷 斯特大台 中谷 斯林西信语印度

杨昌旗,姜文汉,饶长辉.孔径平均对自由空间光通信误码率的影响[J].光学学报,2007,**27**(2):212-218.

- [4] HAN Cheng, BAI Bao-xing, YANG Hua-min, et al. Study and simulation of air influences on laser pulse transmission delay time [J]. Acta Optica Sinica, 2009, 29(8): 2046-2050.
 韩成,白宝兴,杨华民,等.大气信道对激光脉冲延迟时间影响的仿真研究[J].光学学报,2009,29(2): 2046-2050.
- [5] HU Zong-min, TANG Jun-xiong. Digital pulse interval modulation for atmospheric optical wireless communications
 [J]. Journal on Communications, 2005, 26(3): 75-79..
 胡宗敏,汤俊雄. 大气无线光通信系统中数字脉冲间隔调制研究[J]. 通信学报, 2005, 26(3):75-79.
- [6] SOFKA J, NIKULIN V. Bit error rate optimization of an acousto-optic tracking system for free-space laser communications[C]. SPIE, 2006, 6105: 61050L-1(9).
- [7] LONG Wei, ZHOU Rui-yan. BER analysis for wireless optical communication system [J]. Journal of Atmospheric and Environmental Optics, 2007, 2(5): 396-400.
 龙伟,周瑞研. 无线通信系统误码率分析[J]. 大气与环境光 学学报, 2007, 2(5): 396-400.
- [8] DING Tao, XU Guo-liang, ZHANG Xu-ping, et al. Control

of bit error rate introduced by platform vibration for free space optical communciation[J]. *Chinese Journal of Lasers*, 2007, **34**(4): 499-502.

丁涛,许国良,张旭苹,等. 空间光通信中平台振动对误码率 影响的抑制[J]. 中国激光, 2007, **34**(4):499-502.

[9] HAN Cheng, BAI Bao-xing, YANG Hua-min, et al. Primary environment influence factors to tracking precision in spaceground laser communication [J]. Acta Photonica Sinica, 2010, 39(1): 89-93.

韩成,白宝兴,杨华民,等. 空地激光通信跟踪准确度主要外 界影响因素研究[J].光子学报,2010,**39**(1):89-93.

- [10] JIANG Hui-lin, LIU Zhi-gang, TONG Shou-feng, et al. Analysis for the environmental adaptation and key technologies of airborne laser communication system [J]. Infrared and Laser Engineering, 2007, 36(Sup): 299-302. 姜会林,刘志刚,佟首峰,等. 机载激光通信环境适应性及关 键技术分析[J]. 红外与激光工程, 2007,36(Sup): 299-302.
- [11] HENNIGER H, GIGGENBACH D, HORWATH J, et al. Evaluation of optical up- and downlinks from high altitude platforms using IM/DD[C]. SPIE, 2005, 5712: 24-36.
- [12] HAN Tian-yu. Study of key technology of transmission in atmospheric channel of free space optical communication[D]. Guangzhou: Guangdong University of Technology, 2005, 11-14.
 韩天愈. 自由空间光通信(FSO)大气信道传输关键技术的研

韩天惠. 自田至间尤通信(FSO)天气信迫传袖天键技术的研究[D]. 广州:广东工业大学,2005,11-14.

- [13] YIN Wen-yan, XIAO Jing-ming. The effects of sand and dust storms on microwave links[J]. Journal of China Institute of Communications, 1991, 12(5): 91-96.
 尹文言,肖景明. 沙尘暴对微波通信线路的影响[J]. 通信学报, 1991,12(5): 91-96.
- [14] STRIBLING B E, WELSH B M, ROGGEMANN M C. Optical propagation in non-Kolmogorov atmospheric turbulence[C]. SPIE, 1995, 2471: 181-196.
- [15] AL-HABASH M A, ANDREWS L C, PHILLIPS R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media [J]. Optical Engineering, 2001, 40(8): 1554-1562.
- [16] FRANZ J H, JAIN V K. Optical communications components and systems [M]. XU Hong-jie, HE Jun, JIANG Jian-liang, et al. transl. Beijing: Publishing House of Electronics Industry, 2002.
- [17] ANDREWS L, PHILLIPS R, HOPEN C. Laser beam scintillation with applications[M]. Bellingham, Washington: SPIE PRESS, 2001.
- [18] ZILBERMAN A, GOLBRAIKH E, ARNON S, et al. Kolmogorov and non-Kolmogorov turbulence and its effects on optical communication links [C]. SPIE, 2007, 6709: 67090k.